# **Exploring Emotion Processing in the Human Brain through Positive and Negative Affect-inducing GIFs**

#### Joshua A. Rocha<sup>1,5</sup>, Vera Klütz<sup>1,6</sup>, Gordon B. Feld<sup>1,2,3,4</sup>, Simon Kern<sup>1,2,3,4</sup>

<sup>1</sup> Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

<sup>2</sup> Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

<sup>3</sup> Department of Addiction Behaviour and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany

<sup>4</sup> Institute of Psychology, Faculty of Behavioural and Cultural Studies, University of Heidelberg, Heidelberg, Germany

<sup>5</sup> Heidelberg Academy of Sciences and Humanities, Heidelberg, Germany

<sup>6</sup> Institute of Cognitive Science, Osnabrück University, Osnabrück, Germany

# Background

- Emotions determine how humans make important decisions, organize memories, and perceive the world<sup>(1)</sup>
- The underlying mechanisms of emotion processing are yet to be fully elucidated
- Previous study<sup>(2)</sup> validated emotion categories using short video GIFs. See chromatic map of emotional categories here:



# **Data Analysis**

- Can we correctly classify different emotions?
- Which features contribute to the correct classification of emotions? (work in progress)

Pre-step to test our method: Can we correctly classify, in which corner the GIF was shown?

Zentralinstitut für Seelische Gesundheit

#### ши талис

#### Aim

Establish a machine learning algorithm capable of classifying positive and negative affect markers in brain signals

## Experiment

Measure positive and negative emotional affect of 144 previously validated short video GIFs using Magnetoencephalography (MEG)

#### Stimuli



Positive and Negative affect-inducing GIFs



- GIFs obtained from Cowen & Keltner<sup>(2)</sup> study
- Eight distinct emotion categories were initially picked





Preprocessing

MEG epochs GIF position



#### **Technical details**

- **Classifier: Logistic Regression** and Random Forest
- 5-fold cross validation  $\bullet$
- ICA performed to remove EOG related components
- Features: isometric features, frequency bands





Feature extraction



- Highest-rated GIFs were selected
- Summarized into two overall categories

#### **Participants**

- n = 32 (Mean age = 24.125  $\pm$  4.612 years; 22 females)
- Inclusion/exclusion: Right-handed, non smokers, no psychological disorders, no specific phobia, no MRI contraindications
- Before session, participant filled out online questionnaires of: Exclusion criteria, Biodata, STAI – short, PERS, & PANAS

### **Experimental Design and Task**

- Head position digitized
- 306 channel MEG (Neuromag TRIUX) + EOG + ECG  $\bullet$
- Experimental task:



Classification accuracy in which corner GIF was shown using Logistic Regression

#### **Future Plan**

Try to extract different sets of features and use variational autoencoders

# Discussion

- Finding a classifier that can decode emotions:
- Could be translationally applied towards approaches against affective disorders
- Improve methods to detect affect processing in sleep or resting state memory consolidation

# Literature

(1) Brosch, T., Scherer, K., Grandjean, D., & Sander, D. (2013). The impact of emotion on perception, attention, memory, and decision-making. Swiss Medical Weekly, 143(1920), w13786. https://doi.org/10.4414/smw.2013.13786

(2) Cowen, A. S., & Keltner, D. (2017). Self-report captures 27 distinct categories of emotion bridged by continuous gradients. Proceedings of the National Academy of Sciences, 114(38), E7900 – E7909. https://doi.org/10.1073/pnas.1702247114

Icons taken from Flaticom.com (22.05.2024)



**Contact**: joshua.rocha@zi-mannheim.de / vera.kluetz@zi-mannheim.de

